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Some Periodic Continued Fractions 
With Long Periods 

By C. D. Patterson and H. C. Williams* 

Abstract. Let p( D) be the period length of the continued fraction for JD. Under the extended 
Riemann Hypothesis for. 9(JD) one would expect that p( D) = O( D1/2 log log D). In order 
to test this it is necessary to find values of D for which p (D) is large. This, in turn, requires 
that we be able to find solutions to large sets of simultaneous linear congruences. The 
University of Manitoba Sieve Unit (UMSU), a machine similar to D. H. Lehmer's DLS-127, 
was used to find such values of D. For example, if D = 46257585588439, then p(D)- 

25679652. Some results are also obtained for the Voronoi continued fraction for VD. 

1. Introduction. Let D be any positive integer. In Williams [7] it was pointed out 
that if D is square-free, then p(D), the period length of the continued frac- 
tion expansion of VD, should be bounded above by an expression of the form 
cD1/2 log log D. In fact, if 

f(D) {D112loglogD for D 1 (mod8), 

f D1/2 log log4D otherwise, 
we should have 
(1.1) G(D) = p(D)/f(D) < k + o(l) 

under the extended Riemann Hypothesis for tfwhen .k= 9(VTD). Here k = 3.7012, 
but we expect by Levy's Law that the smaller value 12ev log 2/72 1.50103 could 
be used for k. In [7] values of D (< 2 x 109) were examined in order to find large 
values of G(D). The largest value found was that of G(D) = 1.040452 for D = 

1492180699. In this paper we describe a further attempt to find values of D for 
which G(D) is large. We also describe some analogous work done in the case of 
Voronoi's algorithm in. (Vi). 

2. Numerical Results. A glance at the results and tables given in [7] reveals that, in 
order to find values of D for which G(D) is likely to be large, one should examine 
integers of the form q or 2q, where q is a prime and q -1 (mod 4). Further, if r, is 
the ith odd prime, one should also attempt to have the Legendre symbols 

(2.1) (D/ri) = 1 (i = 1,2,3,...,n) 
for as large a value of n as possible. Thus, for each such r, we would want D to 
belong to one of the (ri - 1)/2 congruence classes such that (D/r,) = 1. To find 
such values of D requires that we find solutions of large numbers of simultaneous 
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linear congruences, a problem best solved by using a number sieve (see Lehmer [3]). 
In Patterson and Williams [5] a very fast version of such a device, called the 
University of Manitoba Sieve Unit (UMSU), is described. This machine will solve 
such systems of congruences at the rate of 1.33 x 108 trials at a solution per second. 

We searched for values of D of four different types: 

(i) D 3 (mod 8) D prime, 

(ii) D 7 (mod 8) D prime, 

(iii) D 6 (mod 8) D/2 prime, 

(iv) D 1 (mod 8) D prime. 

We examined values of D of type (iv) to determine whether values of G(D) would, 
as predicted by Shanks, tend to catch up to the larger values obtained for the other 
types of D. For each value of n (1, 2,3,...) UMSU was programmed to search for 
the first m (at least) values of D of a given type. For n < 32 (r32 = 137), we used 50 
as our value of m. Because of the amount of time needed to go farther, we cut this 
value down to 10 for 33 < n < 36 (r36 = 157). In addition, for n = 37 we used 
m = 7 and m = 8 for D of type (i) and type (iii), respectively. For D of type (iv) we 
used m = 10 for n = 37 and m = 4 with n = 38 for D of type (ii). 

After these numbers had been found, a job requiring many weeks of continuous 
use of UMSU, we computed the corresponding continued fraction period lengths 
p(D) and the values of G(D). We summarize our results in the four tables given 
below. We give only those numbers D > 2 x 109. Also, we print D and its 
corresponding p- and G-values only when G(D) exceeds the value of G(d) for all of 
our computed values of d of the same type with d < D. 

In Table 5 we present the values of D, from among those found by UMSU, with 
the largest p ( D) values. We give five such numbers for each D-type. 

On examining these tables, we see that the values of G(D) are certainly growing 
sufficiently slowly for (1.1) to hold. Further, the values of G(D) for D of type (iv) 
seem to be slowly catching up to those values for the other D-types. 

TABLE 1. D - Type (i) 

D [ p(D) G(D) 

2186009851 151838 1.037297 

2287905811 155710 1.039131 

7528121899 288198 1.043420 

30738225571 603178 1.061828 

614886781051 2794390 1.063448 

1260977393659 4081590 1.076694 

55400066448211 28076486 1.078532 
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In Table 6, we extend part of Table I of Lehmer, Lehmer and Shanks [4]. That is, 
for various values of n we give the least prime D 1 (mod 8) such that (2.1) holds. 
We also mention here that D. H. Lehmer had already found previously (but not 
published) the first six lines of this table. 

TABLE 2. D - Type (ii) 

D p (D) G(D) 

2763423391 170804 1.034456 

4912298119 230048 1.036883 

5097972751 234768 1.038196 

12095524039 366384 1.040132 

19672399231 471320 1.042810 

24880707679 536964 1.053362 

50151351559 772360 1.058250 

62324011759 864408 1.059728 

492210358039 2519212 1.074069 

4944598510471 8181752 1.075383 

22542868742839 17739532 1.076772 

46257585588439 25679652 1.081244 

TABLE 3. D - Type (iii) 

D p (D) G(D) 

2340752254 157036 1.035754 

7636279366 288766 1.037853 

8813799094 312690 1.044133 

8932573654 316434 1.049406 

31416841054 611088 1.063790 

6730689687166 9585044 1.076654 

13518648471574 13732410 1.081381 
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TABLE 4. D - Type (iv) 

D p (D) G(D) 

18901431649 433383 .996329 

22945498489 479525 .997981 

23258723401 483919 1.000142 

28467424441 540685 1.007395 

37312059409 625233 1.013966 

40094470441 653345 1.021500 

163965430561 1348681 1.024427 

192052219969 1473213 1.032023 

2570329924369 5552441 1.033038 

2871842842801 5924695 1.041624 

8103297298321 10135403 1.049695 

457165855430761 79417945 1.055462 

3. Some Analogous Results for 11. It is well-known that the regular continued 

fraction expansion of 11 is never periodic; however, Voronoi's [6] continued 

fraction is periodic for cubic irrationalities. Let X= 9(VD ) be the pure cubic field 

formed by adjoining VD to the rationals 9, and let A be the discriminant of Y. 
Then, if D is cube-free and D = ab2 with (a, b) = 1, we have 

{ -3a 2b2 when a2 b2 (mod 9), 
= -27a2b2 otherwise. 

If c0 is the fundamental unit of X, R (= log eo) the regulator of X, and P the period 
of Voronoi's continued fraction, then by (8.3) of Williams [8], we get 

(3.1) R > [ P/4] log 2. 

Unfortunately, we do not yet have a rule like Levy's for this case, but it seems from 
empirical evidence that 

(3.2) R = vP, 
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TABLE 5 

Type D p (D) G(D) 

152290419440611 46274886 1.062983 

165427035605659 48190146 1.061386 

(i) 206546921647291 54350198 1.069334 

215226414830491 54450146 1.049121 

300272328240091 65344634 1.063030 

133051755648751 42848636 1.054226 

142368153139039 44889152 1.067078 

(ii) 146936775525439 45349180 1.060843 

166290530163319 48736480 1.070583 

174346066249111 49611996 1.063923 

246406633037854 57923528 1.041889 

256397742215806 60536004 1.067108 

(iii) 285278695393246 64119584 1.070606 

301938138430366 64551980 1.047187 

350240722763374 70400728 1.059121 

229297977151681 54793321 1.034296 

259853252349289 58673599 1.039268 

(iv) 273323976657169 60545353 1.045206 

366525636221761 69241975 1.029650 

457165855430761 79417945 1.055462 

where 1.12 < v < 1.13. Thus, if we can bound R, we can certainly get a result like 
(1.1). 

If h is the class number of X, we have 

(3.3) hR = A (1), 

where 

D (1) = lim ;X(s)/l(s) = lf(q). 
slI q 
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TABLE 6 

r f Least D 
n 

83 8114538721 

89 9176747449 

97, 101, 103 23616331489 

107, 109, 113, 127 196265095009 

131, 137, 139 2871842842801 

149 26437680473689 

151 89436364375801 

157, 163, 167 112434732901969 

173, 179 178936222537081 

Here,the (Euler) product is taken over all the primes q, and f(q) is given below: 

f(3)= 3/2 whena2b2(mod 9), 
1I otherwise; 

f(q)=1 whenqIab; 
ifq- -1 (mod 3) and q + ab, then f (q) = q2/(q2- 1); 

if q-I(mod3)andq+ab, then 

(q) Jq2/(q - 1)2 when (D/q)3 = 1, 

q2/( q2 + q + 1) otherwise. 

If we use the symbol FH9 to denote the product over all primes less than or equal to 
Q and j (mod 3), and if we denote by T(Q, D) the infinite product 

H f(q) 
q>Q 

q - 1 (mod3) 

taken over all the primes exceeding Q and 1 (mod 3), then, since the infinite 
product 

H f(q) 
q= -1 (mod3) 

taken over all the primes -1 (mod 3) converges, we have 

Q Q 

(D(1)= f(3)Hf (q) Hf (q) T(Q, D)(1 + o (1)). 

Now 
Q Q 

Hf(q) < nq2/(q - 1)2; 
1 1 
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hence 
Q Q Q Q 

Hf(q) Hf(q) < (2/3)Hq/(q - I)q/(q -X(q)) 
1 I1 

where each of the products on the right-hand side is evaluated over all the primes 

< Q and x(q) = (-3/q). By Mertens' theorem 

Q 
ql ( q- 1) = e logQ(I + o(1)). 

Also, since 
7T 

L(1, X) = - ql(q-X(q)) = 
q 3 

(the product taken over all the primes q), we get 

(3.4) (1) < 27ref (3) (log Q) T(Q, D)(1 + o (1)). 

If g is the extension X( X) of X, where w2 + W + 1 = 0, then the discriminant d 

of gis 3A2 (see Barrucand and Cohn [1]). If we put 

U(D) = T((log d )2, D)5 

then U(D) < 1 + o(l) under the extended Riemann Hypothesis for t, (see, for 

example, Williams, Dueck and Schmid [9, pp. 282-283]). Combining this result and 

(3.4) with Q = (log d)2, we get 

(1 ) < 4 ) log log(3A2) (1 + o (1)). 

It follows from (3.3) that 

(3.5) hR < 2eYf(3) log log(3M)(1 ? o(l)). 
9 

When, for example, D is square-free, then 

(3.6) hR f(I/3)e-Dloglog33D4(1 + o(1)) whenDD ? (mod9), 

\(2/3) e -D log log 37D 4(1 + O(1)) otherwise. 

4. Further Numerical Results. From (3.3) we see that in order to maximize R we 

must minimize h and get 0(1) as large as possible. Of the possibilities for D 

square-free, D t + 1 (mod 9) and 3 + h (see Honda [2]) we elected to examine prime 

values of D 2 or 5 (mod 9). If ri is the ith prime of the form 1 + 3t, then the prime 

D values which should give large 4(1) values are those for which (D/ri)3 = 1 

(i = 1,2, 3,... ,n) for as large a value of n as possible. We now encounter a 

difficulty, however. The determination of P is very expensive for rather modest 

values of D (say = 200000); thus, we decided to look at the values of R instead. By 
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using the methods described in [9] we can calculate R much more rapidly than P; 
but, it still becomes very expensive to find R when D > 2 x 109. (It should, of 
course, be borne in mind that the discriminants for such values of D are very large, 
exceeding 1020.) 

UMSU was programmed to find the first 50 values of D for each n until a value of 
n was reached for which the least of these 50 numbers exceeded 231 - 1, the word 
size of the machine used to compute R-an AMDAHL 470-V8. We then computed 
R for each D and C(D) = R/(D log log(37D4)). In the cubic case it takes very little 
time to find the D values and a much larger amount of time to find the R values, the 
reverse of the situation in the quadratic case. 

Our results are summarized in the following tables. In Tables 7 and 8 we give only 
those values of D for which C(D) exceeds the C values for any of the other numbers 
that we found which were less than D. In Tables 9 and 10 we give values of D for 
which the corresponding regulator exceeds any of those previously found. Since 
2e0/3 = 1.18738, we have nothing here that comes near to violating the Riemann 
Hypothesis for 8. Also the growth of C(D) is slow and getting slower as D 
increases. 

TABLE7.D 2(mod9) 

D R C(D) 

29 40.27082 .454983 

1721 3669.37913 .588309 

39521 92172.43814 .596085 

92009 218706.73901 .597544 

343433 895028.71553 .640002 

6616667 18089884.90792 .642420 

7202369 19994005.36092 .651564 

202306187 586455162.98256 .653911 

562788101 1689849729.97072 .670149 
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TABLE 8. D- 5 (mod 9) 

D R C(D) 

41 56.28937 .440672 

239 431.94224 .533495 

1301 2549.94344 .545373 

4523 9440.96250 .560767 

19391 42811.86808 .572868 

67829 154494.32105 .575923 

72617 168197.50896 .584893 

143879 361610.34278 .626614 

1145327 3021373.73848 .635515 

8596463 23331608.01905 .635544 

8666393 23925356.23751 .646390 

48487811 139358465.15040 658771 

55570523 163251776.10755 .672292 

60435383 179011355.42037 .677194 

TABLE 9. D 2 (mod 9) 

D R C(D) 

689816063 1888303399.286361 .609701902921 
780923333 2040735586.012364 .581327045940 
807748787 2264449384.076498 .623423186470 
911130401 2663628567.917647 .649341195701 
947294867 2666732555.238140 .625039976249 

1039506833 2941248070.747570 .627656937643 
1090062947 3194601736.597826 .649803055418 
1250773679 3481668991.375506 .616374865552 
1345747619 3810698517.456939 .626570574715 
1411121837 3967734472.270628 .621882987760 
1627729013 4492140541.726865 .609547346456 
1695130949 5107010533.454052 .665168464608 
2044171163 5464205375.038442 .589124377005 
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TABLE 10. D - 5 (mod 9) 

D R C(D) 

78446831 195588785.889993 .568325353629 
85474661 229039192.818766 .610210176803 

140795537 399133674.604591 .641989245305 
172132241 499066717.859134 .655156175458 
226496759 590664701.273444 .587554486086 
230154107 639837059.815727 .626247127877 
246667721 681500286.460078 .621912563185 
258947807 705470723.780494 .612941643650 
262192559 708275870.201634 .607683348911 
267667889 739791831.127160 .621604001102 
313154087 892931349.895030 .640243198576 
613655951 1737626269.841794 .631422697999 
641290649 1782982379.770936 .619710166881 
671319221 1958397914.780726 .649933701273 
736002077 2030844203.759158 .614180052846 
784288049 2197173781.242724 .623178495983 
789581183 2210040440.336767 .622584176723 
792812201 2226806639.150783 .624725493228 
860248787 2595846960.356864 .670626975448 
914070821 2652552259.996093 .644540413185 
948371243 2660317585.609716 .622821760536 
957302429 2743025183.193182 .636135024907 

1400879507 4155081949.704781 .656054383521 
1617735209 4322176122.273822 .590142344485 
1632061859 4549031363.516906 .615612610599 
1827261311 4810329644.671832 .580807712394 
1831479161 5515724098.441698 .664430018640 
2108312123 5713478707.454342 .597085411322 
2124689657 6127255313.478815 .635344945017 
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